4 SkyPlot Program Detail

The previous chapter discussed the SkyPlot program in basic terms. This
chapter looks at each aspect of the program’s structure in detail and describes
what physical and mathematical models it employs. The pattern of discussion
observes the following plan:

e structure

e cquations of motion

e extra astronomical/physical effects taken into account

4.1 Dual Time Increments (Time Steps)

Before going into detail about the program, a more basic part of its structure
needs to be discussed first.

Two types of time increment (time step) are used in the program. One for
observing, when the debris is visible to the detector and requires a fine timestep,
and one for scanning, when the debris is not visible, and only a coarser time step
is required. The larger scan timesteps were introduced into the algorithm to
facilitate faster run times for the program. This dual time step feature and the
bisection (“homing”) method of accurately finding the time of an event (see
section 4.2), is a standard method for satellite prediction programs (Kelso, 1997).

While the debris is visible, the observing time steps are small enough to enable
at least one position to be recorded inside every sky bin along the debris trajectory
to prevent aliasing effects (Figure 4.1). The alt/az bins have a size of 2°x2° so
given a typical topocentric zenith angular velocity of ~1.5°™ for an object in
LEO, a time step of about 1s would ensure at least one recorded position for sky
bins at the zenith. Failure to do so would result in some bins not being
“illuminated” by the debris, even though those bins contained the trajectory
(Figure 4.1). Away from the zenith the topocentric angular velocity is smaller due
to foreshortening, but altering the time step size to reflect this and minimise
execution time would have been too complex an undertaking. Instead the time
step size is simply chosen to be that which would allow illumination of the alt/az

bins at the zenith.
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Figure 4.1: Illustration of the effect of aliasing. The time steps are too large to enable all sky
bins along the debris track to be “illuminated” by the debris position increments (equidistant dots
along track). [lluminated sky bins are shaded, unilluminated bins along track are shown in bold.

This timestep size is unnecessary for the periods when the debris is below the
horizon or within the Earth’s shadow. Instead, a larger time increment is used
which reduces execution time. These coarse and fine timesteps are referred to as
the “scanning” and “observing” (or “scan” and “obs”) timesteps respectively, and
the program is referred to as being in “scan” or “obs” mode when using the
appropriate timestep.

The size of the scan timestep is chosen to minimise execution time without
losing accuracy. If the scan timestep is too large, short-duration apparitions, such
as produced between rising and entering the Earth’s shadow for example, will be
missed entirely. Running the SkyPlot program with the same parameters but
changing the size of the scan timestep, for debris in a Mir-type orbit observed
from Mauna Kea through January-March 1998, shows this effect (Figure 4.2)

Maximum Scan Timestep

The maximum timestep for scan is dictated by the size of skybin (2° square),
and the maximum angular speed of debris. The minimum length of detection scan
track chosen to be two skybins. The timestep for scan mode is that of the time

taken to cross two skybins; i.e.

40
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Figure 4.2: Effect of altering scan timestep on detection rate. With finer scan timesteps, more
shorter-duration apparitions are detected, until the value levels off with a sufficiently low timestep,
indicating a threshold value of fineness has been reached. The dip between 5 and 10 seconds is
probably caused by slightly different geometry produced by the different timesteps. Also shown is
the general behaviour of run time; with finer timesteps the run time increases dramatically.

where from equation (2.25)
_ R 2 2 : % -1 4 2
Otop = T 04 +(030 cos L) -2040, cosi|” rads’, 4.2)

where R = orbital radius (m), h = orbital height (m), wq = geocentric debris
angular speed (rad s™), o, = sidereal rotation rate (7.295x10” rad s™), L = site
latitude (rad), i = orbital inclination (rad).

The value of oy is overestimated by assuming i to be 90°. In this way there is
no loss of accuracy as the corresponding scan time is underestimated, giving only

a slight degradation of execution time. Thus equations (4.1) and (4.2) become:

6.9813x107> h
- r 5¢G (4.3)
a [a)dz + (a)o oS L)2F

a graph of which is shown in Figure 4.3.

tSCElI‘l



4-4

1000 -
F 27

100 +

@ C
& Observer
E Latitude
= - ——60°
o+ 7 200

o
1 L L L L L L Lo } L L L L L L Lo } L L L L L L Lo }
100 1000 10000 100000

Semimajor Axis (km)

Figure 4.3: Scan timesteps from equation (4.3) for circular orbits. It can be seen that the effect
of changing latitude of observer becomes apparent for orbits above about 10000km.

4.2 Homing

The transition from scan to obs mode, if performed as a mere change of
timestep, would result in the obs mode starting off where the scan mode finished.
As the scan mode timestep is larger than that of the obs mode, the first obs mode

position would appear removed from where it physically would appear (see Figure
4.4).

obs
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Figure 4.4: Simple transition from scan to obs mode and the resulting “Transition Gap” that
arises as a result.

To avoid this problem the algorithm detects a change of mode and homes in on
the mode interface, stopping when the interval between successive iterations falls
below the current obs timestep. This is achieved by calculating the position
vectors of the observer and debris for two successive timesteps and comparing the
topocentric visibility “status” for each, assigning a value of 0 for “not visible” and

1 for “visible”.
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If the status is zero for both positions, the debris has not crossed the transition
from “not visible” to “visible”, and the program continues in scan mode. If
however the second of the two positions has a visibility status of 7, the homing
loop is invoked. It follows the standard bisection technique to find the roots of a
polynomial: the interval between the points containing the root is halved and each
half compared to determine if the root lies within it. If not, the other half is
scanned, but if so, the interval is halved again and the process repeated until the

interval reaches the required accuracy (Figure 4.5).

“not visible” region “visible” region
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v

Figure 4.5: Illustration of the homing algorithm (see text).

The code used to perform these calculations is the main code in the program
itself; i.e. no extra code is used. Execution flow is controlled by monitoring and

comparison of the twin visibility status variables during each loop.

4.3 Coordinate system

The coordinate system used for the purposes of the SkyPlot program is a
rectangular equatorial geocentric system with axes aligned with the First Point of
Aries, the North Celestial Pole, and the third axis orthogonal to the first two. This
places the (x,y) plane in the plane of the Earth’s equator, the z axis parallel with
the Earth’s axis.



4.4 Equations of satellite motion

This section discusses the equations of motion of a body in a closed orbit about

the Earth, and their implementation in the SkyPlot program.

4.4.1 Orbit terminology

The size and shape of an elliptical orbit is defined by its semimajor axis (a) and
eccentricity (e) (Figure 4.6). The eccentricity range is 0 < e < 1; zero for circular
orbits, while e = 1 defines a parabolic orbit. In such a case, the orbit is not bound,
1.e. it is moving at exactly escape velocity for its distance from the Earth, and
barring impact with the Earth, it will leave Earth space and not return.
Eccentricities greater than unity define hyperbolic orbits, which are again
unbound but with higher energies. For this reason in future discussions, debris in
such orbits is not considered as it poses only a fleeting hazard. LEO and GSO
orbits have eccentricities approximately equal to zero, whereas GTO and Molniya
orbits are very eccentric with a value of e ~ 0.7.

The perigee defines the point of closest approach to the Earth’s surface, while
the point furthest away is the apogee. Orbital velocity is greatest at perigee and
least at apogee.

The orientation of the orbital plane to the coordinate system and of the orbit
within the orbit plane are given by the inclination (i), the longitude of the
ascending node (Q2), and the argument of perigee (®) (Figure 4.7). The inclination
(1) is the angle the orbital plane makes with the plane of the Earth’s equator. The
Longitude of the Ascending Node () is the angle around the equatorial plane
between the First Point of Aries and the Ascending Node, the point where the
orbit crosses the equatorial plane, heading north. This fixes the orientation of the
orbital plane with respect to the geocentric coordinate system mentioned above.

The Argument of Perigee (w) is the clockwise angle measured from the
Ascending Node to the perigee, and fixes the orientation of the orbit within the
orbital plane.

The final parameter is the Epoch of Perigee (t), which fixes the satellite or

debris particle along the orbit. This is a fixed time at which the particle last passed
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Figure 4.6: Definition of elements that determine the shape and size of an orbit within the
orbital plane. Also illustrated are unbound orbits and some other measurements.

(or is due to pass) through perigee. Thus for any other time, the elapsed time since
the epoch of perigee is calculated, and is then used to calculate the position of the

satellite using the other orbital elements.

4.4.2 Position in the orbit

Given the orbital elements, the satellite’s position anywhere in its orbit can be
calculated at any time by finding its true anomaly using the following method
(Roy, 1988). This is only an approximate method however, because it is derived
from the simple “two-body” solution to orbital mechanics, which assumes the
only force at play in the system is the radial gravitational force between the Earth
and the satellite.

In real life, other forces exist which perturb the idealised motion, which are
discussed in section 4.5. However, the two-body solution is a very good

approximation and serves as a starting point for orbital mechanics. The mean



geocentric angular velocity of the debris, its mean motion n, is given by:

1

n :(%]2 rad s, (4.4)
a3

where the gravitational constant G = 6.668 x 10" N m* kg?, and M, = mass of
Earth = 5.98x10** kg. Position around the orbit is defined using the Mean

Anomaly M, the Eccentric Anomaly E and the True Anomaly f (Figure 4.8).

Celestial Sphere

Perigee

Figure 4.7: Illustration of elements of orbit orientation. The orbit itself is projected onto the
celestial sphere where the pertinent angles are depicted for clarity

The mean anomaly M is the angle from perigee swept by a radius vector rotating
with angular velocity n, so that at time t since perigee passage at T, the mean
anomaly is defined by:
M=n(t-7) rad. (4.5)
The eccentric anomaly E is related to the mean anomaly by eqn (4.6) which is
known as Kepler’s Equation, and which can only be calculated by iterative
methods, the routine for which can be taken from e.g. Duffett-Smith (1987).
M=E-esin(E) rad. (4.6)
The eccentric anomaly relates to the true position of the debris by producing a
line perpendicular to the major axis through the debris position to meet a circle
circumscribed about the elliptical orbit (see Figure 4.8) at Q; the angle PCB is the

eccentric anomaly E, as measured from the centre of the ellipse.
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The true anomaly is the true angle from perigee to the debris position as
measured from the focus (see Figure 4.8), and is related to the eccentric anomaly

by the following equation:

Figure 4.8: Definition of eccentric and true
anomalies. The debris orbit is the solid ellipse,
the debris itself at X. The centre of the ellipse
is at C, its focus at F, and the perigee at P. The
dashed line is part of the circumscribed circle
about the ellipse that is used to define the
eccentric anomaly E, which in turn is used to
calculate the true anomaly of the debris, f.

anf £ (75 an( 2. @7
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Given the true anomaly and the orbital elements, the position of the satellite

can then be found in geocentric Cartesian coordinates using spherical

trigonometry:
X=T [cos Q cos(w+ f) —sinQ sin(® + ) cos i] , (4.8)
y:r[sichos(co+f)+costin(co+f)cosi], 4.9)
z=rsin (v +f) sini, (4.10)
where r = radius vector, given by:
a(l-¢’
= ﬁ . (4.11)
The radius vector may also be calculated by:
r=a(l-esinE) . (4.12)

4.5 Orbital Perturbations

Up to now the equations of orbital motion above have assumed that the Earth is
perfectly spherical, that its gravitational field behaves as if it were created by a

point mass at its centre, that no other masses have any influence on the two-body



4-10

system, and that there are no non-gravitational forces operating in the system
either.

In real life however such ideal conditions do not exist. Air drag, tidal forces
from the Sun, Moon and planets, and a non-spherical gravitational field all
conspire to perturb the Keplerian orbit slightly from a perfect ellipse (a fourth
relativistic force also exists, but is negligible in magnitude relative to the other
forces mentioned, for the case of Earth satellites).

Earth Figure

The shape of the Earth is not that of a perfect sphere. Its mass is distributed
asymmetrically with the result that its gravitational potential is not homogenous.
The potential can be described as that for a uniform spherical mass modified by
spherical harmonic correction factors in the spherical coordinate system (r, 0, ¢).
The factors contain both zonal and tesseral terms, the former defining latitudinal
changes in the Earth’s shape with the latter defining changes with longitude. The
predominant deviation from a sphere that the Earth exhibits is zonal, i.e. its
equatorial bulge (Table 4.1); changes with longitude are relatively minor and
affect only geosynchronous satellites. Therefore the zonal terms dominate (i.e. no
¢ dependence) and the expression for the gravitational potential of the Earth may

be approximated to that of equation (4.13) (Aiello &Yong, 1978),

U= _@{1 -3 (&TJHPH (cos@)] , 4.13)
T

I n=2
where r = radius, 0 = latitude, R, = Earth radius, J, = zonal harmonic coefficients,
and P, = Legendre polynomials. The second term in the expansion is three orders
of magnitude larger than higher order expansions and is the most significant; this
is the term due to the equatorial bulge (Aiello &Yong, 1978). The extra mass at
the equator exerts a torque on the orbit which induces gyroscopic effects, causing

two major effects which can be calculated from equation (4.13).

Equatorial radius 6378.140 km
Polar radius 6356.755 km
Flattening factor f

(ellipticity) 0.00335281

Table 4.1: Physical parameters of the equatorial bulge of the Earth. The difference in
diameters amounts to almost 43km. In this sense the Earth is an oblate sphere. This is expanded
upon in the next section.
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The first effect is precession of the orbit plane, also called regression of the

nodes, the rate of which can be quoted as:
2
2a’ 6 —e? ?
while the second effect causes a rotation of the orbit within the orbital plane, i.e.

the line of apsides rotates within this plane Figure 4.9. Its rate is given by:
2
&= —m%sinzi—Z). (4.15)
2a? ﬁ —e? y
In both equations n is the mean motion, a, e and i are the orbital elements, and J,

is the second zonal harmonic coefficient for the Earth, with a value of

J»=0.001082 (Weisel, 1989).

nodal regression

apsidal advance

Figure 4.9: Nodal regression and apsidal advance caused by the oblateness of the Earth.

These effects are modelled in the SkyPlot program by calculating the daily
movement and updating the longitiude of the ascending node and the argument of
perigee between observing nights, i.e. during that jump from one night to the next

which avoids daylight hours.

4.6 Position of Observer

The Earth’s oblate shape means that latitude measured along the Earth’s
surface differs from that measured from the Earth’s centre. Latitude measured
with respect to the Earth’s surface is termed geographic or geodetic latitude, while
that measured with respect to the Earth’s centre is called geocentric latitude.
Conventional measurements of latitude are made using the geodetic system, so for

the purposes of the SkyPlot program, which requires rectangular coordinates in a



4-12

geocentric reference frame, a conversion is necessary.

A direct conversion from a geodetic to a geocentric reference frame is
explicitly given in Wertz (1978). Given a point P with a geodetic latitude ¢ and
height h above the reference ellipsoid in metres, the distance d from P to the

centre of the Earth (in units of the Earth’s equatorial radius) is given by:

®
-
-

local 7
vertical /A@>”

-
-
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horizontal

equator/

Figure 4.10: Latitude is normally expressed in terms of geodetic latitude ¢, as measured using
the local vertical which is itself perpendicular to the local horizontal, a tangent to the reference
ellipsoid used to define the oblate shape of the Earth. It can be seen that geodetic latitude is not a
measure of the angle between the site and the equator as measured from the Earth’s centre. That
distinction goes to the geocentric latitude ¢’. The difference between the two verticals (A®) is
known as the deviation of the vertical (see later).The oblateness of the Earth has been greatly
exaggerated for clarity.

d ~ (1.5679x107) h + 0.998327 + 0.001676 cos 2¢ - 4x10° cos 4¢.  (4.16)

AN

Equation (4.16) provides the true geocentric magnitude of the radius vector of
the observer. Orthogonal components used to obtain rectangular coordinates are

obtained from the following expressions:

d cosd’ = (C + (1.5679x107 )h) cos ¢, (4.17)
dsing’ = (S + (1.5679x107 ) h) sin ¢, (4.18)
where
1
Cs= cos2(|) + (l-f)2 sin2¢] 2, (4.19)
and S=(1-fyYC (4.20)

With these components the rectangular coordinates of the observer may be

obtained. With reference to Figure 4.11,
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x = dcos ¢’ cos vy, (4.21)
y = dcos ¢’ sin y, (4.22)
and z = dsin¢’ (4.23)

where y is the angle measured from the x axis towards the y axis from the
abscissa, corresponding to the direction of the first point of Aries Y.

The angle v, at the beginning of each evening’s observing (i.e. the resumption
of observing after the daytime jump) is calculated from the time of onset of
astronomical twilight. The time is converted to local sidereal time (LST), which
by definition gives the position of the observing site as the angle from the vernal
equinox. Thus the “start angle” of the observing site for that evening is obtained

by simply converting the LST from its units of hours, to that of radians, by:

z
A

Figure 4.11: Illustration of geocentric rectangular coordinates for observer

Yo = LSTiwitignt x 15 x m/ 180~ LSTwiligne x 0.261799, (4.24)
since one hour of sidereal time is equivalent to 15 degrees. As the length of the
sidereal day is 86164.09055s, the rate at which the Earth turns on its axis (the
sidereal rate, or mgq ) is therefore:

27

= — =% =7292116x107 rad sl (4.25)
86164.09055

Ogid

Therefore at any time t, the angle y parallel to the celestial equator between the
vernal equinox and the observer is given by:

V= Yo t (osa—t). (4.26)
This calculation of , is performed in the START subroutine, which is called at
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the beginning of each new observing night.

4.6.1 Geocentric to geodetic alt/az correction

As a result of this oblateness the zenith produced from the radius vector of the
observer (the “geocentric zenith™) is different to that produced at right angles from
a tangent to the Earth’s surface (the “geodetic zenith”). The angle between the
geocentric and geodetic zenith is called the “deviation of the vertical” (Figure
4.12), and is given by (Wertz, 1978) as

AD =~ 0.19242°sin 2¢p — 0.000323°sin 4¢ , (4.27)
where ¢ is the geodetic latitude. Figure 4.13 shows that the deviation of the

vertical reaches a maximum value of 0.19° for a geodetic latitude of 45°.
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Figure 4.12: Effect of Earth oblateness on measured position of debris. For a given geographic
latitude @ the geocentric latitude @’ can be calculated, which gives the deviation of the vertical
A®. In this simplified 2D case the topocentric zenith distance of the debris (z) is given by the
geocentric altitude (z”) plus AD.

The initial calculation of debris altitude and azimuth uses the geocentric zenith
(since the observer’s radius vector is used), so a coordinate transformation is
required before allocating the debris position to the correct alt/az bin. The
difference in alt/az coordinates between geocentric and geodetic systems as a
function of altitude and azimuth is given in Figure 4.14 which shows the
difference is never more than the value at the zenith, which takes a maximum

value of = 0.19° at 45° latitude.
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Figure 4.13: Deviation of the vertical showing maximum deviation at geodetic latitude 45°.
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Figure 4.14: Difference between alt/az coordinates calculated in the geocentric frame and
transformed to geodetic frame. The difference is nowhere greater than that at the zenith, so figures
calculated for zenith only show the maximum difference. This plot is for a geodetic latitude of 45°,

which has the maximum difference of about 11.4 arcmin.
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Figure 4.15: Dome of the celestial sphere about the observer, showing the transformation from
geocentric to geodetic altitude/azimuth coordinates. See text for details.

With reference to Figure 4.15, the transformation from geocentric to geodetic
alt/az coordinates is just the solution of a spherical triangle delineated by the
geodetic and geocentric zenith, and the debris position. Given the geocentric
altitude and azimuth (a; and A; respectively, the complementary geodetic altitude
o, can be obtained from the spherical cosine equation:

cos oy = cos a; cos AD + sin a; sin AD cos (2n-A), (4.28)
where o; and o, are the complementary geocentric and geodetic altitudes,
respectively. The complementary altitudes and the azimuth term may be rewritten
to give the more convenient form of

sina, = sina; cos AD + cos a; sin AD cos A, (4.29)
where a, is the geodetic altitude. Using the cosine formula again gives the

geodetic hour angle H:

Ccos 0. = cos Oy cos AD + sin o, sin AD cos H. (4.30)
COS O] - COS Oy cos AD
So cosH = : —2 : 4.31)
sin oy sin AD
sina; - sina, cos AD
and - cosH = : 2 ’ (4.32)

cos a, sin AD

since a, and a, are complementary. As the geodetic zenith is due north (or due
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south if in Southern hemisphere) of the geocentric zenith, the coordinate
transformation is symmetrical about the observer’s meridian i.e. an azimuth in the
Eastern hemisphere will not cross the meridian into the Western hemisphere
following transformation. Therefore the conversion from geodetic Hour Angle to

Azimuth can be computed easily using the simple rules:

If A, > 180° then A, > 180° & .. A, 180° + H

180° - H

If A, < 180° then A, < 180° & SOAp

4.7 Earth Shadow

One of the main factors affecting satellite and debris visibility is that of eclipse;
1.e. passage of the debris through the shadow cast by the Earth. As the Sun has a
finite angular size the Earth’s shadow consists of both an umbra and penumbra

with dimensions as shown in Figure 4.16.

penumbra

dl |

L |
136x10° m 1-38x10° m \
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Figure 4.16: Shape of the Earth’s umbra and penumbra. The half-angle of the umbra cone 6, =
15753 and the half angle of the penumbra cone 0, = 16°8”. Values were calculated using radii of
the Sun and Earth as 6:96x10° m and 6:378x10° m respectively, and the distance between the two

as 1 AU (1-495985x10"" m). Note that this diagram is not to scale, causing exaggeration of the half
angles, and distortion of the distances shown.

The full treatment of penumbra as well as umbra shadows when considering
sunlight flux on the debris is considered in the model because duration of
penumbral transit is non-negligible. Preliminary calculations showed that for
circular orbits the transit duration for radial and tangential passes through the
penumbra ranged from under ten seconds for a radial entry in LEO to over two

minutes for a tangential entry around GSO (Figure 4.17). See Appendix 1 for
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definition of radial and tangential trajectories. For elliptical orbits at apogee the
velocity would be lower than that at circular velocity so the duration would be
correspondingly larger. These times are of comparable size or larger than the time
increment used in execution of the SkyPlot program and therefore cannot be
ignored as an almost-instantaneous effect.

Vokrouhlicky et al (1993) produced an intensive mathematical and physical
model of the atmospheric refraction and absorption effects produced during
penumbra transit, and showed that the main effect on solar flux attenuation was
due to the apparent flattening of the solar disk as seen from the satellite (Figure
4.18) with only a minor contribution coming from the eclipsing of the solar disk
by the solid Earth. They assumed the atmospheric effects to begin at a height of
~50 km.

The computations involved in the paper are lengthy and complex and their
effects if incorporated into the SkyPlot program would have been to increase
execution time by an unacceptable amount, hence an approximation to these
effects was sought. As approximate equations to the Vokrouhlicky model have yet
to be developed by Vokrouhlicky at time of writing, a computationally easier

approximation was preferred.
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Figure 4.17: Preliminary calculations of penumbra transit duration for radial and tangential
entry/exit. The calculations assumed circular orbits. Also included are curves for the scan and obs
timesteps discussed earlier. See text.

As refraction effects begin when the bottom of the Sun’s disk appears to touch

the top of the 50 km layer of the atmosphere* (Figure 4.18), the flux attenuation

" Entry into the penumbra is assumed throughout this discussion.
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curve is approximated by adopting an “expanded” Earth for the purposes of
calculating the flux attenuation during penumbra passage only. In this case the
radius of the Earth is increased by 50 km so that geometric eclipse begins at the

same time that atmospheric eclipse would commence.

a b c
oo _
d e f

Figure 4.18: Appearance of the solar disk during passage into the penumbra. The dotted line
denotes the top of the atmosphere at 50 km; the solid line is the horizon. From Vokrouhlicky et al,
1993. See text for details

The apparent size of the Sun changes very little with the time of year, and
when viewed from LEO to GSO, so it can be regarded as having a constant
angular radius. Although the apparent size of the Earth when seen from a satellite
varies with orbital altitude, if one takes the maximum altitude to be GSO then its
angular radius is no smaller than 8-7° or some 522°. The Earth therefore appears at
least some 32 times larger than the Sun, and thus its horizon at the point of eclipse
may be approximated to a straight line with only small errors induced by the lack
of curvature, but with the advantage that subsequent eclipse flux calculations are
much easier and therefore require less computation time. By plotting the
difference between solar disk obscuration produced by an Earth disk of 8-7°
radius, and that of a flat horizon, Figure 4.19 shows that the maximum possible
increased obscuration effect produced by the flat horizon does not exceed 0.35%
of the solar disk.

The paper by Vokrouhlicky was concerned with solar radiation pressure on
satellites during penumbral transit, and contained graphs of the transverse (i.e.
parallel to velocity vector) acceleration component on existing and theoretical
satellites. As these satellites were modelled to be spherically symmetric (i.e. no

variation of acceleration was produced by attitude variation of the spacecraft), and as
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the geocentric arclength of the orbit through the penumbra was typically ~1%

Overestimation of Solar Disk Obscuration

by Assuming Flat Horizon - GSO Orbit
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Figure 4.19: Error induced by approximating the obscuring Earth horizon as a straight line, for
the worst-case scenario of maximum apparent Earth curvature at GSO.

of orbital period, which for a circular orbit implies an arclength of 3.6° so that the
angle between the solar radiation pressure force and velocity vector also changed by
3.6° then one can assume that practically all of the variation in transverse
acceleration in the graphs was produced by the variation in solar flux. Therefore
normalising the ordinate produces graphs of normalised solar flux values.

This provided “realistic” examples of penumbra immersion against which to test
the expanded-Earth non-atmospheric flat-horizon model. The LEO example in the
paper by Vokrouhlicky consisted of a simulated LAGEOS™ penumbra entry such
that the trajectory of the setting solar disk was at 43° to the normal to the local
horizon as viewed from LAGEOS. The abscissa was given as time after first contact
with the top of the 50 km atmosphere layer; this was converted to arcminutes of the
geometric (unrefracted) centre of the Sun’s disk above the horizon to remove
dependency on geometry and orbital period in comparison calculations. The results
of the comparison are shown in Figure 4.20.

It can be seen that the expanded-Earth model underpredicts the solar flux at
LAGEOS (and hence its brightness) by as much as 40%. The long tail of the
Vokrouhlicky model is described in the paper as being due almost entirely to

refraction effects; actual eclipsing of the flattened solar disk not beginning until

" A passive, laser-tracked satellite in a 5900km circular polar orbit.
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the very end (near the —100’ mark).
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Figure 4.20: LEO comparison of penumbra illumination models. The jagged appearance of the
difference curve is due entirely to sampling noise between the two other curves’ nonaligned data
points. See text for discussion.

The graph for GSO orbit shows that the difference between the two models is
much smaller (Figure 4.21). This is due to the fact that the observed thickness of
the 50 km-width atmosphere constitutes a much smaller fraction of the unflattened
observed solar diameter at higher altitudes (12.8% instead of 315% at 250 km),
1.e. there is less difference between this case and an airless Earth. The general
trend by adopting this method is therefore that the brightness of debris in the
penumbra is underpredicted at all times, by an amount inversely proportional to orbit
height. At LEO the underprediction peaks at 40% while in GSO the difference does
not rise above 10%. The poor LEO prediction is not as important however, as the
debris only stays in the penumbra for a short time. In the absence of any simple and
quick-to-execute method of approximating the penumbra brightness of debris, the

airless expanded Earth model will have to suffice for now.
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Figure 4.21: As for previous figure but for simulated satellite in geostationary orbit.

Coding: Shadow entry criteria

The SkyPlot program treats the Earth’s umbra and penumbra with a structure as
in Figure 4.16. The situation is rotationally symmetric about the shadow cone axis
and thus the problem reduces to a two-dimensional case involving just the plane
containing the shadow cone axis and the debris position vector.

The geometry for calculation of umbral and penumbral eclipse events is shown

schematically in Figure 4.22.

» S’

Figure 4.22: Geometry for determination of eclipse events. See text for details.
With reference to Figure 4.22, the centre of the Earth is shown at C, the debris at D,
and the Sun is taken to be off the left of the page at S. The unit vector of the Sun’s

direction is shown as Fr_, while that of the Earth’s shadow axis r,, is by definition

sun ?

in the opposite direction, i.e.:
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rsh = _rsun . (433)
The apparent separation angle 6, between the centres of the Earth and the Sun, from
the viewpoint of the debris, is calculated from the scalar product of the debris vector

rq and the shadow axis vector r,, (since CS’ is parallel to SD), as:

¥, -r, L -r
Coseel — Ash d — sh d . (434)
Falral  [ral

Projecting a tangent to the Earth’s surface at T from the debris at D enables us to

calculate the apparent angular radius of the Earth p. from the same viewpoint of the

debris, as:
sinp, = —CT = _r; 4.35
=] (435)

The apparent angular radius of the Sun ps is taken to be a constant with a value of
Ps = 4.66003x107 radians (Allen, 1973).
The apparent altitude of the of the centre of the Sun’s disk hgy, is therefore
defined by:
hgyn = 01— pe - (4.36)
The scenario of full illumination of the debris, depicted by Figure 4.22, observed
from the viewpoint of the debris is shown in Figure 4.23(a). During the penumbral
phase of shadow entry/exit, when the Sun’s disk is partially obscured by the Earth’s

limb, the view is shown in Figure 4.23(b).

Solar
Disk /
hsun
Earth Limb
Earth
Oel Limb
P,
Earthg vV
Centre
(a) (®)

Figure 4.23: (a) Debris-eye view of Figure 4.22, not to scale. Note that 6, p. and h,, are arcs,
not linear dimensions. (b) Debris-eye view of the Sun during Earth penumbral transit, showing
construction for determination of the part of the Sun’s disk unobscured by the Earth’s limb. See

text for details.

The relationship between hg,, and the sector angle ¢ is given by



s a].
pSUl’l

424

4.37)

where the negative of h,, is used to obtain ¢ in the correct range. The normalised

area of the exposed part of the solar disk is therefore given by:
A 3Pln|d—sing]

sun 2
Tcpsun

_¢—sin¢
2n

(4.38)

(4.39)

The solar flux on the debris is therefore taken to be just the Solar constant for the

wavelength and bandwidth used, multiplied by the factor Agy,. Sample curves

showing the fall-off of illumination for a radial entry into the penumbra are given in

Figure 4.24.
The SkyPlot program therefore identifies three cases of debris illumination:
Case 1:  Debris fully illuminated for Psun < hgun < 70
Case 2: Debris partially illuminated  for —Psun < hsun < Psun
(in Earth’s penumbra)
Case 3:  Debris not illuminated for —7 < hgun < —Psun
(in Earth’s umbra)

SkyPlot calculates SNR for cases 1 & 2 if the debris is above the observer’s

horizon at night, but not for case 3.

Geostationary

0.5

MEO
10000km

0.4 1

Normalised Solar Flux on Orbiting Body

0 10 20 30 40 50 60 70 80 90 100 110

Time from Start of Immersion (s)

Figure 4.24: Sample penumbra flux curves using flat Earth model with no atmosphere and

radius increased by 50km.
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4.8 Topocentric Angular Velocity

Both debris and observer are moving about the centre of the Earth, their
motions described by position and velocity vectors. The apparent angular velocity
of the debris from the point of view of the observer (the “topocentric angular
velocity”, or o) 1s calculated from the relative position and velocity vectors,
which are calculated separately below.

Analytical investigations into the maximum angular speed of debris to be
expected under various special cases of observing site latitude/zenith distance and
orbital height/inclination/eccentricity were performed in chapter 2. This section
describes how the angular speed is calculated generally for the purposes of the

SkyPlot program.

4.8.1 Observer velocity

The path of the observer describes a circle about the polar axis of the Earth, its
plane parallel to the equator. The radius of the circle is proportional to the cosine
of the latitude ¢ of the observer, plus the observer’s height above sea level. In
section 4.6 the rectangular components of the observer position were given in
units of the Earth’s equatorial radius R., taking into account the oblateness of the
Earth’s shape. The true geocentric distance r, from the Earth’s centre to the
observer is reproduced here coupled with the geocentric latitude ¢’ (the geodetic

latitude is shown as ¢):

rcos ¢’ = (C + (1.5679x107 )h) cos ¢, (4.40)

where
C = [coszd) + (1-1) sinzd)]_% (4.41)
and S=(1-f)YC (4.42)

and where f is the flattening factor or ellipticity of the Earth’s form, with a value
of £=0.00335281. Thus it can be seen that the radius of the circle of observer’s
motion is given by equation (4.40). The angular velocity about the axis is just the
sidereal rate of wgq = 7.2921 16x10” radians s

The relation between linear velocity v, radius r and angular velocity o, v=r1 o,
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applied here, gives the linear velocity of the observer:
Vobs = Ig COS O * Msig - (4.43)
The observer’s velocity vector is always perpendicular to its position vector
(for circular motion). The Cartesian components of the position vector are (from

section 4.6):

X = IgCos ¢’ cos Yy (4.44)
and y = Igcos ¢’ siny, (4.45)
where

YV =y, + (ogg-t). (4.46)
Therefore the Cartesian components of the observer’s velocity vector v, are

&, =1, C0s ¢’ sin y, (4.47)

¥, = Tgcos ¢’ cos v, (4.48)
and & =0. (4.49)

There is no z component as there is no motion parallel to the Earth’s axis.

4.8.2 Geocentric debris velocity

Cartesian components of an orbiting body’s geocentric velocity are given in
Roy (1988, p103). The components of the debris velocity vector vq4 are:

na

& = - (bl,cosE — al,;sinE), (4.50)
na :
% =— - (bm,cosE — am, sinE), (4.51)
r
na :
and & =— - (bn,cosE — an,sinE), (4.52)
r

where n, a, r, b and E, as defined earlier in this chapter, are the mean motion,
semimajor axis, radius vector, semiminor axis and eccentric anomaly respectively,
while I,m,n are the direction cosines of two orthogonal geocentric axes in the orbit
plane and aligned with the semimajor (subscript 1) and semiminor (subscript 2)

axes, such that:

ly=cos Qcos® — sin Q2 sin®cos1i, (4.53)
m;=sinQcos® + cosQsinwcosi, (4.54)
n=sin®sini, (4.55)

and
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l,=—cos Qsinw — sinQ coswcosi, (4.56)
mp;=—sinQsin® + cos Qcoswcosi, (4.57)
n, =cos ®sini, (4.58)

where Q, ® and 1 are orbital elements defined earlier in the chapter as the
longitude of the ascending node, argument of perigee, and orbital inclination,

respectively.

4.8.3 Topocentric angular velocity

The linear velocity of the debris with respect to the observer is obtained from
the relative vector vq4,, such that:
Vo =V4 -V,
=[08 - & ). (& - & ). - &]

To find the instantaneous topocentric angular velocity, the magnitude of the

(4.59)

component of vg, perpendicular to the line of sight, [vge|. must be obtained. This
is achieved by first calculating the angle between the relative position vector rq,
and the relative velocity vector vq, (using the scalar product), then multiplying
[Vao| by the sine of that angle (which applies for both acute and obtuse angles) -
see Figure 4.25.

[Vao| Sin O

observer

)

Figure 4.25: Calculation of wy,, from relative vectors of position and velocity.

Thus
4oV
cosezu’ (4.60)
|rdo| |Vd0
the perpendicular component is:
[VdolL = |Vao| sin 0, (4.61)

and the topocentric angular velocity is given by:
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Otop = [Vao L (radians ™) . (4.62)

|rd0 |

4.8.4 Topocentric Angular Velocity Binning

The angular velocity ceiling was set to 100 arcmin s™, stepped in increments of
5 arcmin s™', giving twenty bins. The equation in the binning algorithm of SkyPlot
1s:
Bin#=int [ (®wpx*RD*60) /5]+1 , (4.63)

where RD = radians to degrees factor = 180 / 7.

4.9 Solar Motion

The motion of the Sun cannot be ignored throughout execution of the program;
its position determines the onset of sunset/sunrise twilight and the position of the
Earth’s penumbral and umbral shadow cones. The calculation of the Sun’s
position is straightforward but lengthy (Duffett-Smith, 1988); to perform this
calculation for every time increment would consume computing power
unnecessarily. The Sun moves across the celestial sphere at an average rate of
0.986°/day. Considering the fact that the alt-az resolution of the bins in the
program output is nominally 2°, the Sun’s position need only be updated once

every two days as the mean effect on the umbra is acceptable.

4.10 The Moon

This section discusses the effect moonlight has on debris observations, and of

calculating its position during the observing run.

4.10.1 Sky Brightness due to Moonlight

The additional brightness of the night sky due to scattered light from the Moon
when it is above the observer's horizon is modelled using equations by Schaefer
(1993), and reproduced here.

The linear brightness value of the sky in nanoLamberts (nL), caused solely by

scattered moonlight, Byoon, 1S given by:
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B _ f(p ) l0{—0‘4[m nnnnn +16.57+kX(Zopo0n )} {l _10[—0.4kX(Z)]} nL, (4.64)

where mpoon = magnitude of the Moon, k = atmospheric extinction factor in

magnitudes per airmass, X(Z) = airmass as a function of zenith distance of Moon

(using Zmoon), and look angle (using Z), and f(pmeon) = scattering function as

function of the separation angle pmoon between the look angle and the Moon. Each
of these terms is now described in more detail.

The magnitude of the Moon for a given phase angle a in degrees is given by:
m,. (o) =-12.73+0.026lc + 4x 107", (4.65)

where o = 0° for a full Moon.
The airmass function for the observer’s look angle is given by:

1

X(Z)=secZ=—7F—=
(2)=sec sin(altitude)’

(4.66)

which is adequate for this purpose as observations do not range below 10°
altitude.
The airmass function applied to the Moon's zenith distance Zy,oon 1S given by:
1

X(z. )= .
Zonn) J-096 sin>z,.) (4.67)

This function is different to that used for the look angle as it gives a better fit to

observed scattered moonlight data (Krisciunas and Schaefer, 1991).

The scattering function f(pmoon) 1 given by:

£(P 00 ) = 107 [1 .06+ cos’ p]+ 1016'157(%“’”)] +6.2x107p 2. (4.68)

4.10.2 Lunar Motion

Like the Sun, the Moon’s position is updated at a frequency related to its
average angular velocity and the size of the alt-az (sky) bin for the output array. In
the case of the Moon, the mean sidereal motion of 13.176358° per day is adopted
(Allen, 1973), leading to an average motion of :

13.176358" x 3600 = 0.5505° per hour, (4.69)
Tsp
where Tgp = sidereal day = 86164.09s. Thus with 2° sky bins, the Moon’s position

need only be updated every 3.6329 hours, or approximately 13,000 seconds.
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Given an accurate position of the Moon for the start of the night’s observing,
subsequent positions may be calculated for the rest of the night by extrapolating
from the first position calculated for that night using the Moon’s hourly motion,
rather than repeat the lengthy calculation every three hours throughout the night.
The error induced by this is sufficiently small for this to be a viable method of
calculation, thus shortening execution time.

Figure 4.26 below shows the error drift throughout the night for a sample date
between the lunar positions calculated fresh each time and those calculated using
the hourly motions derived from the first position. It can be seen that the final
error for that date is well within the size of the 2° sky bins. Figure 4.27 depicts the
error after 12h for each day throughout a typical year, showing that although there
is a large variation, the maxima are less than 0.4°. Thus this technique is a viable
method of calculating the Moon’s position faster, with acceptable error.

Calculations used here and in SkyPlot were based on routines in Duffett-Smith,
(1987).
0.14

Position Difference (degrees)

UT (h)

Figure 4.26: The difference between performing a complete calculation of the Moon’s position
every hour, and using the Moon’s hourly motion deduced from its first position result. Over this 12
hour period the difference amounts to less than one-fifth of a degree by the end of the period.
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Figure 4.27: The end-of-12h-period figures for each day of 1990. Although there is a large
variation in difference, the maxima are not larger than 0.4°, much smaller than the size of skybin
(see text).

The algorithm with regard to this method of calculation is as follows:
1. Calculate first position of Moon at beginning of night using complete
routine to obtain initial right ascension and declination values (o, o).
2. Determine hourly motions in right ascension Aa. and declination A3 using
data from this first calculated position.
3. Use oy = ap + Ao and & = &y + A to obtain subsequent coordinates of

Moon for all other times throughout the night.

4.11 Milky Way

From the Earth’s viewpoint, our home galaxy is visible to the naked eye as a
broad irregular band of light crossing the celestial sphere in a great circle, the
average number of stars per unit area decreasing with galactic latitude.

The Milky Way’s contribution to the background sky brightness is obtained
from a table of integrated star light (Allen, 1973, p245) as a function of galactic
latitude, given in units of the equivalent number of 10" magnitude stars per square

degree, or “S10” units, which are converted to SI units in section 4.14.
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Figure 4.28: Brightness density of the Milky Way as a function of galactic latitude. The units
of brightness are given as the equivalent number of 10™ magnitude stars per square degree (S10).
Details of the sixth-order polynomial fit to the data are shown.

Values of galactic background for intermediate latitudes are calculated by
using a sixth-order polynomial fit to the data (Figure 4.28). To facilitate program
execution speed, these values are calculated to the nearest degree of latitude and
stored in a lookup array before the time-intensive part of the program begins. This
model therefore does not feature any inhomogeneity with galactic longitude.

Galactic latitude is calculated using the Horizon-Galactic coordinate
transformation matrix (Duffett-Smith, 1988) which requires the Cartesian
coordinates of the observer-debris look angle. This is used rather than the standard
equation to transform equatorial coordinates to ecliptic because an additional
calculation would have to be made to derive the equatorial coordinates from the
initial Cartesian values. The matrix method obviates this first step. As only
galactic latitude is required, only the bottom row of the transformation matrix is

used, so that the final calculation for galactic latitude reduces to:

b :sin'1

(Xdo'g+YdO'h+Zd0.l)j| (4 70)

Sdo
where X40, Vdo, and zg, are the Cartesian components of the debris-observer
position vector, s4, 1S the magnitude of the position vector (present to convert the
components to unit vectors), and the terms g, /4, and i are the conversion matrix

components i = -0.8676008, j = -0.1883746, and k = 0.4601998 respectively.
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4.12 Zodiacal Light

Like the Milky Way, the Zodiacal Light is a source of background noise that
can degrade the SNR of a debris detection. It is symmetrical about the ecliptic
plane and about the solar longitude. It peaks at the position of the Sun, and drops
with ecliptic latitude and elongation from the Sun, though a small peak is
observable at the anti-sun position, called the Gegenschein (Figure 4.29). Data for
the ecliptic variation of zodiacal light brightness have been determined
(Levasseur-Regourd & Dumont, 1980), and were included in this study as a
lookup table, which was accessed by calculating the ecliptic coordinates from the
Cartesian debris-observer relative vector components, using the transformation
matrix featured in Duffet-Smith (1988, p50):

m 1 0 0 X
n = |0 cosg sing ||y 4.71)

PJap 0 -sine cosg) \z 0.5

Here € = mean obliquity of the ecliptic. The epoch 2000.0 value of € = 23.43° was

treated as a constant because great accuracy was not required due to the size of the

zodiacal array cells.

4.13 Refraction

The Earth’s atmosphere refracts light such that the zenith distance of an object
appears smaller than it would be if there were no refraction. Thus if z is the true
zenith distance, z’ the observed zenith distance after refraction, and R is the

change in zenith distance due to refraction, then z’ =z — R.
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Figure 4.29: Variation of the zodiacal light with ecliptic latitude and the ecliptic longitude
separation to the Sun. The brightness is symmetric about the longitude of the Sun, and the ecliptic.
The brightening 180° from the Sun is due to the Gegenschein. Units of brightness are in number of

10™ magnitude stars per square degree (see text).

The magnitude of R is a function of zenith distance and the prevailing
meteorological conditions at the observing site. A rough expression for R is
usually expressed as (Duffett-Smith, 1988):

_ 0.00452°P tan z
(273+7T)

(degrees) , (4.72)

where P = barometric pressure (mb) and T = atmospheric temperature (K). This
expression is accurate to ~ 6” in the zenith distance range of 0°-75°. Although
observations of faint objects are rarely if ever undertaken at zenith distances
above 60° due to atmospheric extinction, for completeness’ sake the more
appropriate approximate formula for zenith distances in the 75°-90° range is given

below (Duffett-Smith 1988):

R P 0.1594+0.0196a + 2x1052 )
(273+ ) +0.505a +0.08452° )

(4.73)

The maximum value of R is 0.5° at STP at sea level for objects on the horizon,

and correspondingly less nearer to the zenith.
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Figure 4.30 Angular difference in zenith distance due to atmospheric refraction. “R1” refers to
the expression used for the zenith distance range 0-75°, while “R2” refers to that for the range 75-
90°.

Given that the size of skybin is 2°x2° in SkyPlot, the effects of refraction are

relatively minor.

4.14 Debris Signal-to-Noise Ratio (SNR)

The SNR calculation is performed once most of the decision-making criteria
are met to deem the debris as “visible”, i.e. the debris is above the observer’s
horizon and out of the Earth’s shadow cone, while the Moon is below the horizon
and the Sun is at least 18° below the horizon, ensuring the sky is astronomically
dark.

The SNR equation is calculated as:

Sd b
SNR = ¢ : 1 1
steb + Ssky + Smoon + Sgal + Szod > + Sreadout J

where Sgq, = signal from the debris, Sy, = signal from the night sky, Smoon =

(4.74)

signal from scattered moonlight, Sg = integrated signal from stars in the Milky
Way, S,oq = signal from the Zodiacal Light, and S;ca40ut = readout noise inherent in

the CCD. The individual signals are now discussed.
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4.14.1Debris Flux Calculation

4.14.1.1 Debris Brightness
Consider light incident from the Sun on a spherical debris particle of radius

raeb- The power (per nanometer wavelength) intercepted by the debris, Py, is
given by:
Pin = 501500 Wb’ (Wnm™),  (4.75)
where solggp = 1.752 W m nm'l, the solar constant at the top of the Earth’s
atmosphere, at a central wavelength of 600nm.
Treating the debris particle initially as a flat lambert disc of the same radius,

the incident light is reflected into & steradians (Figure 4.31).

7 steradians

debris /
solar flux

R
@ telescope
. objective

Figure 4.31: Reflection off lambert sphere treated as disk.
Reflected intensity must be modified by the Bond Albedo Ay, for a lambert

sphere, given in section 1.3.3, and reproduced here for clarity:
2.
Ab((l)): 0.32993—[51n¢+(n—(|))cos ¢], (4.76)
T

where ¢ = phase angle (light source — debris — observer). The reflected intensity

I4er from the debris is therefore given by:

2
1 = SOl Wi, A(6) (W nm™ sr). (4.77)

deb T
T

Now, the solid angle QO subtended by the telescope objective of radius ri, at the

debris-observer distance d, is given by:

2
T,
o = d‘; (s1), (4.78)

so that this solid angle intercepts light reflected from the debris particle.




4-37

The effect of atmospheric extinction must also be taken into account, however.
The Earth’s atmosphere both absorbs and scatters light, causing a reduction in
brightness of the source, an effect termed “extinction”. This attentuation factor

“Ext” must be multiplied by the power from the debris, and is given below

(Schaefer, 1993):

sin (alt)

4,
Ext= 10{ “4.7)

where k = extinction coefficient (magnitudes per airmass), and alt = altitude of the
debris (above observer’s horizon). The value of k varies from site to site and with
time of year, but is usually of the order of 0.10-0.15 for astronomical sites

(Schaefer, 1993). The behaviour of Ext for different examples of observing site is

shown in Figure 4.32.
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Figure 4.32: Behaviour of extinction factor Ext with altitude. The effect of air quality in an
urban environment (Los Angeles) is also shown for comparison.

For a given bandwidth of AA nanometres, the power incident on the telescope
objective is then obtained from equations (4.77), (4.78) and (4.79) to give:
P = lgy Qo EXtAL (W), (4.80)



4-38

4.14.1.2 Optics transmission

By far the biggest factor affecting light transmission through the telescope is
the central obstruction provided by the secondary mirror. In Schmidt-Cassegrain
telescopes (SCTs) of large diameter, the secondary diameter is typically 30% that
of the primary, i.e. a transmission factor of 91%.

The transmission factors of the two mirrors and corrector plate of the SCT are
each of the order of 99%, so that transmission is 0.99° = 0.97.

The Detector Quantum Efficiency (DQE) of a CCD is a measure of the ability
of a CCD to detect every photon that falls on it. No CCD at the present time can
detect every photon (a DQE of 100%), but by using fluorescent dyes and/or chip
thinning the DQE of CCDs can be raised to above 50% in the visible region. For a
wavelength of 550nm, the DQE of a typical CCD is about 60% (Lobb and Dick,
1992, p23).

Total transmission p due to the above three factors therefore amounts to

p=0.91x0.97 x 0.60 = 0.53. (4.81)

4.14.1.3 Plate Scale

The plate scale is the factor that relates angular separation in the sky to linear
measure in the focal plane. The displacement x in the focal plane is caused by an

object subtending an angle 6 such that:

tan0 = % = 0= % for small angles, (4.82)

where f = focal length of telescope, so that x takes the same units as f. Therefore

using the appropriate units, the plate scale can be defined as:

0 1
Sp = el arcsec/mm. (4.83)
4.14.1.4 Streak Image Dimensions

In the absence of a turbulent atmosphere, a point source on the sky is not
imaged to a single point in the focal plane because of Fraunhofer diffraction at the
primary aperture. Rather, the energy is spread out in a pattern described by the

Airy function,
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2
Iy = 10[”1(3)} , (4.84)
a

where Ig ,= normalised intensity at angle 0 and at the optical axis respectively, J;
= Bessel function of the 1* order, and a is given by:

. nDsin® DO
A A

: (4.85)

where D = telescope objective diameter, A = observing wavelength. The resulting
intensity pattern in the focal plane is shown in Figure 4.33.

Due to turbulence in the atmosphere however, the image is blurred such that
fine detail of the Bessel function is lost and the image is spread into an area ~1-2”
wide, and for this reason the central peak of the shape is often approximated by a

gaussian curve of order:

I, =1 ex , 4.86
(=) o

which is illustrated to a different scale in Figure 4.34.

The “seeing” of the atmosphere is taken to be the Full Width at Half Maximum
(FWHM) of the gaussian curve, therefore by setting I, to I/2 in (4.86) the seeing
is related to o by:

seeing = 1.177c. (4.87)

Now, the finite integration time coupled with the topocentric angular speed
means that the debris image will streak on the CCD frame. To facilitate the area
calculation, the gaussian curve is approximated to a top hat function of equal
volume and height (Figure 4.35). Appendix 2 shows the calculation of the top hat
function (or “spot”) dimensions in detail, but the main result is that the radius of
the spot is given by:

-y (4.88)

From equation (4.87) the radius of the top hat spot is related to the seeing
therefore by:
r; = 1.202 x seeing. (4.89)
The streak width is therefore the diameter of the spot (ds = 2 1;), and its length
the product of the topocentric angular speed o, the integration time t, and the

plate scale s, giving an area of:
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Agireak = ds 0op TSp  pixels. (4.90)

Figure 4.33: Qualitative representation of the Airy
pattern of the debris image. The central peak out to
the first minimum, known as the “Airy Disk” which

contains 84% of the total flux, has a diameter of
approximately 0.3” for a 1 metre telescope .

Figure 4.34: Atmospheric turbulence spreads the ideal
Airy pattern out into a shape that is often
approximated to a gaussian, with a base diameter of
the order of 1-2”.

Figure 4.35: The gaussian may be approximated to
that of a top hat function of equal height and volume.

The energy of a photon is given by:

hc
E phot = (), (4.91)

where h = Planck’s constant (6.6262x10>* J s), ¢ = speed of light in vacuum
(2.9979x10° m s™). Therefore the energy of each photon at the operating

wavelength of 550nm is:

Epnot = 3.6118x10™"7 J. (4.92)
The flux of photons per second at the telescope objective is therefore:
P
Flux,, =—*- photons s (4.93)

phot
After transmission losses through the telescope optics, and further losses in the
conversion from photon to electron at the CCD (all encompassed by the
transmission factor p), the total number of electrons produced during the
integration time t over the entire streaked debris image (the streak signal Sgyeax) 1S
given by:

S

=Flux tp electrons. (4.94)

streak tel

So that the total count per pixel, which is the debris signal (Sgep), 15:
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S

S __ “streak __
deb -

A

Ptel T p

phot streak

electrons.
E (4.95)

streak

4.14.1.5 Penumbra Shading

The fraction of unobscured solar disk is calculated following the equations given
in section 4.7, if the solar disk is partially covered by the Earth’s horizon. The
result is a factor (“PenFactor”), calculated separately, which is simply multiplied

by the debris signal Sgep.

4.14.2Galactic and Ecliptic Background

The contribution to the background sky from the galactic plane and zodiacal
light is calculated according to the routines specified in sections 4.11 and 4.12
respectively. The units of brightness were specified in terms of Sy, i.e. the flux
equivalent to the number of IOth-magnitude stars per square degree. These fluxes
are converted into electron counts at the CCD by first converting the S;( value to a

photon flux at the top of the atmosphere:
o =7 = (photons 5™ m™nmarcsec™), (4.96)

where: Sjo = sky brightness in question; Fiy = flux of 10™ magnitude star in
visible band (3.44x10"° Wm™nm™); k, = number of square arcseconds in one

square degree (1.296x10"); E,, = energy of one photon at 650nm (3.056x10™" J).

4.14.3Night Sky Contribution

This is calculated in the same manner as the galactic and zodiacal brightness
above, with the exception that the airmass extinction factor is omitted. The value
of sky brightness is taken to be a constant with a value of 21.9 magnitudes per

square arcsecond (5.98x10%° W m™ nm™ arcsec™®) (Benn & Ellison, 1998).

4.14.4Scattered Moonlight Contribution

The value Byoon (nL) is calculated according to routines specified in section
4.10.1. An equivalence of the nanoLambert unit is quoted in Schaefer (1993) as

InL = 26.33 magnitudes arcsec™, which is equivalent to 1.01x10?' W m™ nm’!
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arcsec”. This is converted to a photon flux by dividing by the energy of one

photon, as in section 4.14.2.

4.14.5Readout Noise Contribution

CCD readout noise is taken as a constant with a value of 10 electrons per pixel,
as the program simulates the ESA Concept A telescope, for which the CCDs have
such a readout noise value (Lobb and Dick, 1992).

4.15 Summary

e The SkyPlot program uses some techniques designed to optimise it for
speed, sacrificing complexity. These procedures were more necessary in
the past than they are now, but nevertheless they remain in the code as
there would be no detrimental effect on computing speed.

e Equations of satellite and observer motion that are utilised in the program
are presented.

e Physical effects taken into account include: Earth oblateness perturbations
(to Jy); Refraction and Earth oblateness effects on true alt/azimuth
measurements for the observer; the shadow of the Earth including
contribution from the penumbra; the apparent motion of the Sun and
Moon; brightness of the night sky background including contributions
from the Milky Way and Zodiacal Light; and finally, details of the Signal-
to-Noise calculation performed by the program are discussed in detail.

e The full code listing of the SkyPlot program is given in Appendix 3.
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