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2. Topocentric Angular Speed of Space Debris

In this chapter, the observational geometry for the full range of viewing angles
from a telescope on the Earth’s surface is examined, to determine the range of
topocentric angular speed of space debris in different orbits that will be present in
the sky. This knowledge is used to characterise the velocity regime likely to be
encountered by any debris detection system pointing at any area in the sky. The
line-of-sight vector is referred to as the “look angle” in this text.

The instantaneous topocentric angular speed of space debris (“o,,”) observed
perpendicular to the observer’s look angle is important to debris detection, as the
more time that debris spends in the telescope’s field of view, the greater its chances
are of being detected.

Angular speed is referred to rather than angular velocity because it is mainly the
magnitude of the angular velocity that is important to detection in terms of dwell
time in the CCD pixel’s field of view. In chapter 7 the direction as well as the
magnitude of the angular velocity vector becomes important in terms of the debris’
dwell time across the entire rectangular array of the CCD.

As most of the chapters in this thesis require some knowledge of the angular
speed of space debris, this chapter investigates the range of ®,, expected from all
configurations of observing site and debris orbit possible. It approaches the problem
from a simple zenith-pointing two-dimensional case, and progresses to a more

complex non-zenith-pointing three-dimensional case.

2.1 Topocentric and geocentric angular speed

The topocentric angular speed of a debris object is its apparent angular speed
relative to the observer. It may be very different to the angular speed of the debris
relative to the centre of the Earth, its ‘geocentric’ angular speed w4, but
nevertheless is of primary concern to this investigation.

The means of deriving o, from wq is always the same no matter what the
circumstances. The value of , 15 obtained by calculating the linear velocity v4 of
the debris then calculating the apparent angular velocity , of that debris as seen
by the observer, usually much closer to the debris than the Earth’s centre. The

linear velocity remains unchanged despite a change of viewpoint (Figure 2.1). With
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reference to Figure 2.1 the linear velocity v is calculated by multiplying o, by the
radius vector of the orbit, R:

V= 0q R. (21)
The topocentric angular speed is then calculated by dividing the linear velocity v

by the distance between the debris and the observer (s),
Op = V/s=wgR/s. (2.2)
For the special case of the debris being at the observer’s zenith, figure 3.1 is
two-dimensional and R = r. + s. If the orbit is also circular, the distance s is just the

orbit height.

Figure 2.1: Basic premise behind geocentric and topocentric angular speed. Debris at D at orbital
height h (radius R) moves at linear velocity v. The observer is at O and the centre of the Earth is
marked at C. The geocentric angular speed o4 is smaller than the topocentric angular speed y,, due
to the observer’s closer proximity to the debris. Small angles for instantaneous velocity treatment
are greatly exaggerated in this figure for clarity.

The fact that the Earth rotates complicates matters only slightly in that one must
redefine the geocentric angular speed to be not just that provided by the debris’
orbital angular velocity o, but that of the vector addition result of wq and the
sidereal rate apparent in the observer’s field of view. This rate is governed by the
declination of the point where the observer-debris line of sight vector (the “look
angle”) is projected to meet the celestial sphere — the “topocentric declination”. The
calculations for the general case are presented in detail in section 2.3.2, but for now
the main point to consider is that this vector sum modification means that the ®q4
factor in equation (2.2) is replaced by a resultant vector ®,. However, the linear
velocity and subsequent topocentric angular speed are calculated in the same
manner; hence from (2.2):

Op = O R /s (2.3)
In the simple coplanar scenarios outlined in the next two sections, the value of w; is

obtained by simple subtraction.



2.2 Observing at the zenith

The simplest case to discuss involves the telescope pointing at the zenith. This
not only simplifies the maths, but also serves a major purpose in that the optical
path traverses the least amount of atmosphere in this direction, thus minimising

atmospheric absorption and optimising conditions for viewing faint objects.

2.2.1 Definition of ®,, - general 2D case

Consider the 2-D case of a body P in circular Earth orbit above the equator, with
an observer O also on the equator watching the body pass through its zenith (Figure
2.2). The orbit is prograde (as most satellite & therefore debris orbits are), i.e.

anticlockwise as viewed from above the North Pole. The geocentric orbital velocity

_|H -1
Vp—\/; ms (2.4)

where p = GM, (G = gravitational constant = 6.673x10™""' N m? kg, M, = Mass of

of P, (vp) is given by:

Earth = 5.98x10** kg), and R = orbit radius = r. + h, where r. = Earth equatorial
radius = 6378 km, and h = orbit height (km).

P

orbit

Earth

Figure 2.2 Two-dimensional case of topocentric angular speed (c.f. Figure 2.1).
Given the relationship between linear and angular speed ® = v/r, where r =
radius and v = linear velocity, the angular speed of the body P with respect to the

Earth’s centre, 1.e. its geocentric angular speed oy, 1s given by:

v /
o, :fp: % radians s . (2.5)

The Earth revolves about its axis in one sidereal day (86164.09s), so the geocentric
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angular speed m, of the observer O at the equator is given by the Earth’s sidereal

rate msig; 1.6. ®, = Mg (in this case only), where:

o = 27
4 86164.09

Adopting a rotating frame of reference with the observer, the relative geocentric

=7.292x107 radianss™ . (2.6)

angular speed o, of point P relative to point O is therefore:

O, =0, -0, = B o, radians s’ . (2.7)

T 3 [

The relative, or topocentric, linear velocity of P with respect to O during passage

through the zenith, i.e. at the instant when the radius vectors of P and O align, is

Vel =R ®, :R{ /% - mo} ms™ . (2.8)

The topocentric angular speed of P is therefore just:

Vel R u . ;
Oop = }fle :E{ /E - 030} radians s™, (2.9)

which in terms of the original orbital velocity is:

given by:

v
Dtop :%:%{% - mo} radians s~ (2.10)

Note that oy, goes to zero for:

R:[Lz] m, @2.11)

which is the orbital radius for geostationary communications satellites. For the

values given above, the radius is 42,173km, or a height of 35,795km (Figure 2.3).
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Figure 2.3 Topocentric angular speed at zenith for 2D equatorial case only, with circular orbit.
Note the asymptote at sidereal rate; for extremely high orbits above GSO the geocentric angular
speed is very small so that the effect due to the Earth's rotation dominates. However, the Earth’s

sphere of influence only extends to ~10° km, so in practice orbits above this height would be

unstable (Roy, 1988), (Weisel, 1989). The dip at geostationary orbit (GSO) is explained in the text.

2.2.2 Extremes of topocentric angular speed

In order to characterise the full range of wyp, the slowest and fastest possible
topocentric angular velocities must be determined. Apart from the special case of
GSO, the slowest case of wp, can be characterised as the apogee of an elliptical
prograde orbit, while the fastest can be thought of as the perigee of a retrograde
parabolic orbit. By definition, an object in a parabolic orbit is moving at escape
velocity, and although it is not worthwhile looking for debris in such orbits, it does
represent the upper limit of angular speed. The elliptical orbit case has its perigee
fixed at a suitably low altitude, because for a given apogee, the lower the perigee,
the slower the speed at apogee. The lowest perigee height permissible for a
relatively stable orbit would be that of a typical LEO, so a perigee height of 200km
was chosen for this exercise.

The calculation of oy, for these cases is very similar to that for the circular orbit
case, the differences arising from different expressions for the orbital velocity at
height h. For the elliptical orbit, the apogee velocity is given by:

Vi = ﬁ(l_—ejms'l, (2.12)
a\l+e

where a = semimajor axis of orbit, e = eccentricity of orbit. If the height of perigee

and apogee are given by h, and h, respectively, then with reference to Figure 2.4,



terms involving a and e can be rewritten using:

2r, +h, +h
a=—elp M (2.13)
2
o +h,
a(l-e)=ro +h, = (l-¢)= , (2.14)
a
ro +h,
a(l+e)=r, +h, = (I+e)=—, (2.15)
a

so that equation (2.12) can be rewritten as:

1
2
Vapo = 2t 1T (2.16)
PO (2 +hp +hy )| 1o +hy

The parabolic case is simpler; by definition, escape velocity at any height above

the Earth is simply V2 times what it would be in a circular orbit, treating that
position as the perigee. Thus the parabolic velocity at height h is:

/2H / 2p -1
v = = ms . 2.17
para R (re+h) ( )

Incorporating equations (2.16) and (2.17) into (2.10), we obtain the topocentric

angular speed expressions for the two extreme cases:

h, r L h,
¢ >
/ |
perigee apogee
ac
P
< a >
dl | -
a(l-e) a(l+e)

Figure 2.4 Orbit parameters in terms of apogee/perigee heights. See text for details.

1

R 2 MR peri

O, =— - o, radianss’, 2.18
P©  h {RﬂRWﬁRJ (2.18)
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1

_Rji2u 2 . -1
Pt0p para =% {E} - ®, ¢ radians 5™, (2.19)

where R = r. + h, and R = 1. + h,, for the elliptical case. Plotting these with

respect to height gives Figure 2.5.
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Figure 2.5 Extremes of topocentric angular speed, represented by elliptical orbit apogee
(slowest) to parabolic perigee (fastest) - see text. Nonzero minima caused by sampling frequency.

223 Three-dimensional case: i-0, zenith-looking
observatory at latitude L0, and circular orbit.

The basic tenet behind the calculation remains the same but with some subtle
differences. With reference to Figure 2.6, the celestial sphere is represented,
showing the debris orbit as a great circle inclined at angle i to the equator, with the
path of the observer made as the Earth revolves at latitude L as a small circle. More
precisely, the observer’s path is that of its zenith projected on the celestial sphere.

The point of intersection is marked at X.
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Celestial
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Figure 2.6: Three-dimensional treatment of topocentric angular velocity at zenith for non-zero
latitude and inclination. See text for details.

The angle 6 between the geocentric angular speed vector of the debris and the
observer’s zenith can be found by solving the spherical triangle NEX using the
spherical sine rule:

sin(90°~L) _  sin90°

sin(90°—i)  sin(90°+0)’ (2.20)

coosL 1 2.21)
cos1 cos 0O

0 = cos™! { COSI} . (2.22)
cosL

The relative geocentric angular speed of the debris at the observer’s zenith is
therefore found by vector addition of the geocentric angular velocities of the debris
(wq¢) and of the observer’s zenith point (®,), where:

™, = Wgqcos L, (2.23)
and o, is a special case of the topocentric declination of the debris (the more

general case is defined in section 2.3.2).

- ®,cos L

>

Figure 2.7 Vector addition of instantaneous geocentric velocity of debris and observer.

With reference to Figure 2.7, the magnitude of the resultant is given by the two-



2-9

dimensional cosine rule, since velocities are instantaneous in this situation and
therefore the spherical triangle in Figure 2.7 is infinitesimally small and can be

approximated by a two-dimensional triangle. The resultant magnitude is therefore:

O, = [oadz +(o, cos L)2 -2m04m, cos L cos BF radians s~ (2.24)

As before in the 2D case, this resultant geocentric angular speed has a
corresponding geocentric linear velocity v, = R ®,, and relative to the observer
distance h from the debris (as we are considering the debris at the zenith), the

topocentric angular speed is therefore:

1
Ogop = % = %[@dz +(w, cos L)? - 2040, cos L cos GF radians s™'. (2.25)

But from equation (2.22), cos 0 = cos i/ cos L, therefore (2.25) becomes:
_ R 2 2 : é : -1 2.26
Orop = 1[0 +(, cosL)” - 2040, cosif* radianss’. (2.26)

As a check, putting L =1 = 0 should result in the 2D equatorial equation given in

(2.10). Substituting in the values of L and i into (2.26) gives:

RiI 2 2 F
Otop = E[(Dd + 0, - 2040,

R 1
- E[(@ q -@0)2F (2.27)
= Rlog-o

h d W)

as before (as @4 = vp/R).

We are now in a position to investigate the effects orbit inclination and observer
latitude has on topocentric angular speed at the observer’s zenith. Figure 2.8 shows
the variation of ®,, with latitude and inclination for a circular LEO of 200km. The
wedge shape is due to the orbit not being visible at the zenith for latitudes greater
than the inclination of the orbit. The value calculated earlier for the simple 2D
coplanar case is seen reproduced at the bottom of the surface, at inclination = 0°,
latitude = 0°.

For a constant latitude oy, increases with orbital inclination as the orbit vector
moves round to oppose the zenith vector. For a constant inclination, the effect of
changing latitude is slight for LEO orbits as mq » ®,, but for higher orbits the effect

is more evident, as witnessed in Figure 2.9 and Figure 2.10. The effect of stationary
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Oop at GSO is also seen from the dip at 1= 0° in Figure 2.10.
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Figure 2.10: oy, for GSO

2.3 Away from the zenith

2.3.1 Trajectory through zenith (2D)

At non-zero zenith angles the linear velocity of the debris is foreshortened along
the observer’s line of sight (Figure 2.11); this has the effect of reducing ., below
its value at the zenith. The main disadvantage however is that by staring through a
thicker amount of atmosphere the brightness of the object is reduced by
atmospheric extinction, which compromises detection. That aspect of debris
detection is addressed in chapter 4 however; the remainder of this chapter

concentrates on angular speed only. Starting with the simple case of a 2D coplanar
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Figure 2.11 : Foreshortening effect on topocentric angular speed for non-zenith considerations.

equatorial case again, (Figure 2.11), o, at a zenith angle 8 for a circular orbit is
calculated by defining the angle the velocity vector makes with the observer’s line-
of-sight (line OP in the figure). The linear velocity of the debris relative to the
observer is as before (following equation (2.1)):
Vrel = (fe + h) — (0g — ) - (2.28)
The velocity component perpendicular to the line of sight (v,) is what determines
the apparent topocentric angular speed, and is given simply by:
VI = Vel Sin ¢ = (re + h) — (0g — @,) sin §. (2.29)
Hence the topocentric angular speed is given by v, divided by the distance between

the object and observer, in this case the slant range denoted by OP in Figure 2.11:

_V_L_(re+h) (mg—mo)sind)‘

@ = = 2.30
op = 5p OP (2.30)
Using the sine rule to solve triangle POC, we obtain:
) Io )
siny=— - sin(90 + o
=R ( ) (2.31)
re
S.cosh=—-cosa
o=% (2.32)
1
. 272
c.sin ¢={1-(—e-cos (Xj } . (2.33)
R
The distance OP is found from the cosine rule:
OP*=r2+R*-2r. R cos 0, (2.34)
S0 OP’=r +R*-2r.Rcos (m—a—¢). (2.35)

The resulting behaviour of wy,, with zenith angle for a pass through the zenith is
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shown in Figure 2.12. It can be seen that for LEO orbits oy, falls by over an order

of magnitude compared to its value at the zenith.
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Figure 2.12 Topocentric angular speed as a function of altitude (angular distance above horizon)
for circular orbit and various heights. Note the fall by about an order of magnitude near the horizon
for LEO.

This can be seen more clearly by calculating the ratio of o, away from the zenith,
over Oy at the zenith. In Figure 2.13 it can be seen that for circular orbits (again in

the 2D case), the greatest reduction in oy, occurs for large zenith distances and low

orbits.
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Figure 2.13 Ratio of angular speed at a given zenith angle to that at zenith.

2.3.2 Non-Zenith Pass (3D)

The final scenario considered in this chapter concerns itself with the most
general case of a debris pass, that where the debris does not pass through the
observer’s zenith. For the sake of simplicity the orbit remains circular and we will
consider only the moment of closest approach, and hence of maximum topocentric
angular speed.

Consider the situation outlined in Figure 2.14 of an “orbit sphere” concentric

with the Earth’s surface, with a radius equal to that of the debris orbit. The height of
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this sphere above the Earth’s surface is therefore equal to the orbit height. An
observer at O has their zenith point defined as being the observer’s radius vector
extended to meet the orbit sphere at ZP. A zenith angle z therefore has a

corresponding geocentric zenith angle 0 of:
Gzz-sin'l[%e sin(n-z)} (2.36)

with R = r. + h. The loci of zenith angles about the observer at O is therefore
denoted by the dashed small circle with radius 6 in Figure 2.14. With reference to
Figure 2.15, which shows only the orbit sphere for clarity, for the orbit path to
satisfy the condition of passing by the observer at the zenith angle specified, it must

only meet the zenith circle tangentially at point Z and not cross it.

Figure 2.14 Geometry for orbit sphere calculations. See text for details.

To calculate the relative angular speed the sidereal component is found first; this
is obtained by calculating the declination of the point Z, since as before the
magnitude of sidereal motion due to the Earth’s rotation depends on the declination
by ®, = g cos 0. The declination in question however is the topocentric
declination, which in the case of an Earth satellite may be many degrees (up to 90°)
different from the declination as viewed from the Earth’s centre (geocentric
declination). This is a topocentric parallax effect caused by the finite radius of the
Earth. For astronomical work, where the distance to the observed object is >> r., the
parallax effect is slight, amounting to just a few seconds of arc for the planets, and
almost 1° for the Moon.

The calculation to find the topocentric declination proceeds first with finding the
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geocentric declination. In Figure 2.15, the orbit plane is tilted with respect to the
celestial equator by its inclination i. The pole of the orbit is therefore denoted by K,
and the angle between the celestial pole and that of the orbit plane is i. The problem
then begins to resemble a coordinate transformation between celestial coordinates
and those based in the orbit plane.

The great circle arc XZ by definition is perpendicular to the orbit plane, being
the radius of the small circle to which the orbit plane is tangent. Extending XZ up
to meet the orbit pole at K makes XK 90°. The latitude of the observer is given by
angle AZ, and the declination of the closest approach is shown as BX. Extending
both of these arcs to cross XK and meet the celestial pole at P creates two spherical

triangles, AKPX and AKPZ.

equator

Figure 2.15 Geometry for non-zenith closest approach, showing small circle of zenith angle loci
for observer (dotted circle).

It can be seen that /ZKP is common to both triangles, and can be found using

the spherical cosine formula for AKPZ, all sides of which are known. Therefore,

(2.37)

cos Z7KP — [(smL-smgcom)]

cos gsini
Given £ZKP, AKPX can now be solved using the spherical cosine formula again:

cos (90 - 8) = ¢0s 90 cosi+sin 90 sinicos LZKP (2.38)
.sin 6 =sinicos LZKP
sini (sin L -sin g cos i)
cos gsini (2.40)

To correct for topocentric parallax, the following construction is used (Figure

(2.39)

c.sind=

2.16). In this case only the vectors pointing to the observer and the debris are

shown (this is not a spherical trigonometry problem). The reference system AYP is
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aligned with the celestial sphere, i.e. the celestial equator lies in the AY plane (with
A pointing to the vernal equinox, though strictly speaking this is not necessary),
and P pointing to the north celestial pole.

The debris is at point Q, the observer at point O and the centre of the Earth at
point C. The geocentric declination found in equation (2.40) and depicted in Figure
2.15 is shown as 6, while the topocentric declination is 6;. The local non-rotating
coordinate system at O has axes parallel to the central axes. Perpendiculars from Q
and O (QB & OD respectively) are dropped to the celestial equatorial plane and by
definition the angles ZCBQ and ZCDO are both 90°.

P

Figure 2.16 Topocentric parallax correction

The triangles ACBQ and ACDO are both solvable however, since the hypotenuse
of both are R and r, respectively. Therefore the height above the celestial equatorial
plane of the observer (DO) is given simply by DO = r. sin L, and that of the debris
is BQ = R sin §, . Since QB and OD are parallel, the distance above the local
celestial equatorial plane at O is simply QA = (QB - OD). This makes the triangle
AAOQ solvable since the hypotenuse OQ is also known, being the observer-debris
distance (s). Therefore the topocentric declination & is given by:

5, =sin” {%} (2.41)

s
. .1[R sin 8 - r, sin L}
=sin

S (2.42)
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Given this declination, the magnitude of sidereal motion at that look angle is
therefore m, = msiq cos O;. The relative angular speed is found as before by the
cosine rule in Figure 2.7. The angular speed of debris at a non-zenith closest
approach is shown in Figure 2.17, Figure 2.18 and Figure 2.19 for a range of debris
heights and zenith distances.

Non-zenith Angular Speed; 500km Circular Orbit
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Figure 2.17: Topocentric angular speed for zenith angles of 30° (upper surface), 45° (middle
surface), and 60° (lower surface), for the latitude range 0°-90° N, and inclination range 0°-180°. Note
the reversed inclination axis.
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Figure 2.18: Same as for Figure 2.17 but for orbital height of 10,000km.
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Non-zenith Angular Speed; 35000km Circular Orbit
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Figure 2.19: Same as for Figure 2.17, but for a near GSO orbital height of 35,000km.

It can be seen in Figure 2.17 that the effect of changing orbit inclination is to
increase oy for retrograde orbits. The effect of inclination is small compared to the
absolute value of wy,p. This is because the geocentric angular speed wq in LEO is
much greater than ,, so the inclination-induced angular difference at the zenith has
little effect. The pattern is repeated further from the zenith, but for lower absolute
values due to foreshortening.

The overall pattern is similar in Figure 2.18; but the relative effect of increasing
inclination is greater for these curves, because wq i1s smaller while ®, remains the
same. For near-GSO orbits however, where mg4 ~ ®,, the effects of inclination are

the most pronounced and produce intersecting curves as shown in Figure 2.19.

2.4 Conclusions

2

Topocentric angular speed “oy,” was defined and calculated for a variety of
orbital inclinations, observing latitudes and viewing angles, for the purpose of
getting a feel for the range of angular speeds likely to be encountered by a ground-
based debris detection system.

It was found that for a given latitude of observing site, my, always increased
with orbital inclination and decreased with increasing zenith distance due to

geometry, and decreased with orbital height due to the slower orbital speeds.
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