Appendix 2: Volume of Gaussian Curve

Calculating the volume of revolution of the curve:

$$I_{x} = I_{o}e^{\left(-\frac{x^{2}}{2\sigma^{2}}\right)}.$$
 (A2.1)

Figure 1: Calculation of volume integral of gaussian curve.

With reference to Figure 1, take a small strip of width dx and height I_x under the curve. The strip's area is therefore:

$$dA = I_x dx . (A2.2)$$

By revolving this area about the y axis, a hollow cylinder is produced (Figure 1), whose volume is given by:

$$dV = 2\pi x \cdot dA = 2\pi x I_x dx. \qquad (A2.3)$$

Substituting in the equation for I_x gives:

$$dV = 2\pi x I_o e^{\left(-\frac{x^2}{2\sigma^2}\right)}.$$
 (A2.4)

Integrating from x = 0 to $x = \infty$ to obtain the total volume of revolution under the gaussian, V_g :

$$V_{g} = 2\pi I_{o} \int_{0}^{\infty} x e^{\left(-\frac{x^{2}}{2\sigma^{2}}\right)} dx$$
 (A2.5)

$$=2\pi I_{o} \left[-\sigma e^{\left(\frac{x^{2}}{2\sigma^{2}}\right)}\right]_{0}^{\infty}$$
(A2.6)

$$=2\pi I_o \sigma^2 \tag{A2.7}$$

Now a top hat cylinder of radius r_c and equal height I_o has a volume V_c of:

$$V_c = \pi r_c^2 I_o$$
, (A2.8)

so that for the two volumes to be equal, we equate (A2.7) and (A2.8), and solving for r_c we obtain:

$$r_{c} = \sqrt{2} \quad \sigma. \tag{A2.9}$$